首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10645篇
  免费   136篇
  国内免费   176篇
电工技术   68篇
技术理论   1篇
综合类   219篇
化学工业   3731篇
金属工艺   559篇
机械仪表   247篇
建筑科学   202篇
矿业工程   127篇
能源动力   899篇
轻工业   726篇
水利工程   35篇
石油天然气   292篇
武器工业   22篇
无线电   404篇
一般工业技术   2755篇
冶金工业   211篇
原子能技术   133篇
自动化技术   326篇
  2024年   1篇
  2023年   107篇
  2022年   137篇
  2021年   194篇
  2020年   204篇
  2019年   221篇
  2018年   196篇
  2017年   196篇
  2016年   171篇
  2015年   181篇
  2014年   502篇
  2013年   604篇
  2012年   524篇
  2011年   1109篇
  2010年   696篇
  2009年   737篇
  2008年   635篇
  2007年   615篇
  2006年   556篇
  2005年   471篇
  2004年   447篇
  2003年   395篇
  2002年   344篇
  2001年   210篇
  2000年   230篇
  1999年   182篇
  1998年   175篇
  1997年   155篇
  1996年   131篇
  1995年   136篇
  1994年   95篇
  1993年   82篇
  1992年   56篇
  1991年   44篇
  1990年   32篇
  1989年   32篇
  1988年   34篇
  1987年   17篇
  1986年   14篇
  1985年   13篇
  1984年   12篇
  1983年   13篇
  1982年   11篇
  1981年   15篇
  1980年   10篇
  1979年   7篇
  1978年   2篇
  1977年   4篇
  1975年   1篇
  1972年   1篇
排序方式: 共有10000条查询结果,搜索用时 93 毫秒
1.
Garzan oil field is located at the south east of Turkey. It is a mature oil field and the reservoir is fractured carbonate reservoir. After producing about 1% original oil in place (OOIP) reservoir pressure started to decline. Waterflooding was started in order to support reservoir pressure and also to enhance oil production in 1960. Waterflooding improved the oil recovery but after years of flooding water breakthrough at the production wells was observed. This increased the water/oil ratio at the production wells. In order to enhance oil recovery again different techniques were investigated. Chemical enhanced oil recovery (EOR) methods are gaining attention all over the world for oil recovery. Surfactant injection is an effective way for interfacial tension (IFT) reduction and wettability reversal. In this study, 31 different types of chemicals were studied to specify the effects on oil production. This paper presents solubility of surfactants in brine, IFT and contact angle measurements, imbibition tests, and lastly core flooding experiments. Most of the chemicals were incompatible with Garzan formation water, which has high divalent ion concentration. In this case, the usage of 2-propanol as co-surfactant yielded successful results for stability of the selected chemical solutions. The results of the wettability test indicated that both tested cationic and anionic surfactants altered the wettability of the carbonate rock from oil-wet to intermediate-wet. The maximum oil recovery by imbibition test was reached when core was exposed 1-ethly ionic liquid after imbibition in formation water. Also, after core flooding test, it is concluded that considerable amount of oil can be recovered from Garzan reservoir by waterflooding alone if adverse effects of natural fractures could be eliminated.  相似文献   
2.
In this study, dilute chemical bath deposition technique has been used to deposit CdZnS thin films on soda-lime glass substrates. The structural, morphological, optoelectronic properties of as-grown films have been investigated as a function of different Zn2+ precursor concentrations. The X-ray diffractogram of CdS thin-film reveals a peak corresponding to (002) plane with wurtzite structure, and the peak shift has been observed with the increase of the Zn2+ concentration upon formation of CdZnS thin film. From morphological studies, it has been revealed that the diluted chemical bath deposition technique provides homogeneous distribution of film on the substrate even at a lower concentration of Zn2+. Optical characterization has shown that the transparency of the film is influenced by Zn2+ concentration and when the Zn2+ concentration is varied from 0 M to 0.0256 M, bandgap values of resulting films range from 2.42 eV to 3.90 eV while. Furthermore, electrical properties have shown that with increasing zinc concentration the resistivity of the film increases. Finally, numerical simulation validates and suggests that CdZnS buffer layer with composition of 0.0032 M Zn2+ concentration would be a promising candidate in CIGS solar cell.  相似文献   
3.
Engineering simulations have opened several gates for today’s chemical engineers. They are powerful tools to provide technical content as physics-based numerical solvers. Augmented reality (AR) and virtual reality (VR), on the other hand, are already underway to digitize environments in many fields. The combination of AR/VR environments and simulations in engineering education has been attracting widespread interest. Literature has demonstrated a massive amount of digital educational environments in several contexts as being complementary to conventional educational methods. Nevertheless, hosting technical content produced by engineering simulations with educational AR/VR is still challenging and requires expertise from multiple disciplines throughout the technical development. Present work provides a facile and agile methodology for low-cost hardware but content-wise rich AR software development. Inspired by the Covid-19 pandemic, a case study is developed to teach chemical-engineering concepts using a liquid-soap synthesis process. Accordingly, we assess and conclude the digital development process to guide inexperienced developers for the digitalization of teaching content. The present contribution serves as an example of the power of integrating AR/VR with traditional engineering simulations for educational purposes. The digital tool developed in this work is shared in the online version.  相似文献   
4.
This short communication presents a generic mathematical programming formulation for computer-aided molecular design (CAMD). A given CAMD problem, based on target properties, is formulated as a mixed integer linear/non-linear program (MILP/MINLP). The mathematical programming model presented here, which is formulated as an MILP/MINLP problem, considers first-order and second-order molecular groups for molecular structure representation and property estimation. It is shown that various CAMD problems can be formulated and solved through this model.  相似文献   
5.
By mans of a chemical synthesis technique stoichiometric CdTe-nanocrystals thin films were prepared on glass substrates at 70 °C. First, Cd(OH)2 films were deposited on glass substrates, then these films were immersed in a growing solution prepared by dissolution of Te in hydroxymethane sulfinic acid to obtain CdTe. The structural analysis indicates that CdTe thin films have a zinc-blende structure. The average nanocrystal size was 19.4 nm and the thickness of the films 170 nm. The Raman characterization shows the presence of the longitudinal optical mode and their second order mode, which indicates a good crystalline quality. The optical transmittance was less than 5% in the visible region (400–700 nm). The compositional characterization indicates that CdTe films grew with Te excess.  相似文献   
6.
This paper presents a stochastic performance modelling approach that can be used to optimise design and operational reliability of complex chemical engineering processes. The framework can be applied to processes comprising multiple units, including the cases where closed form process performance functions are unavailable or difficult to derive from first principles, which is often the case in practice. An interface that facilitates automated two-way communication between Matlab® and process simulation environment is used to generate large process responses. The resulting constrained optimisation problem is solved using both Monte Carlo Simulation (MCS) and First Order Reliability Method (FORM); providing a wide range of stochastic process performance measures. Adding such capabilities to traditional deterministic process simulators provides a more informed basis for selecting optimum design factors; giving a simple way of enhancing overall process reliability and cost-efficiency. Two case study systems are considered to highlight the applicability and benefits of the approach.  相似文献   
7.
Carbon nanotubes are the most promising reinforcement for high performance composites. Multiwall carbon nanotubes were directly grown onto the carbon fiber surface by catalytic thermal chemical vapor deposition technique. Multi-scale hybrid composites were fabricated using the carbon nanotubes grown fibers with epoxy matrix. Morphology of the grown carbon nanotubes was investigated using field emission scanning electron microscopy and transmission electron microscopy. The fabricated composites were subjected to impact tests which showed 48.7% and 42.2% higher energy absorption in Charpy and Izod impact tests respectively. Fractographic analysis of the impact tested specimens revealed the presence of carbon nanotubes both at the fiber surface and within the matrix which explained the reason for improved energy absorption capability of these composites. Carbon nanotubes presence at various cracks formed during loading provided a direct evidence of micro crack bridging. Thus the enhanced fracture strength of these composites is attributed to stronger fiber–matrix interfacial bonding and simultaneous matrix strengthening due to the grown carbon nanotubes.  相似文献   
8.
The current work explores the usage of novel synthesized Deep Eutectic Solvent (DES) as a catalyst cum solvent media for the thermal dehydrogenation of chemical hydrides, namely Ammonia Borane (AB) and Ethylene diamine bisborane (EDAB). In the first instance, the quantum chemistry based COSMO-SAC (COnductor like Screening MOdel Segment Activity Coefficient) model was used for the selection of the pertinent solvent. 1-Butyl-3-methylimidazolium methanesulfonate: Imidazole ([BMIM][MeSO3]:[Im]) turned out to be an ideal eutectic mixture with the highest predicted solubility with amine boranes. The DES was synthesized by combining the Hydrogen Bond Acceptor (HBA), namely 1-Butyl-3-methylimidazolium methanesulfonate and Imidazole as Hydrogen Bond Donor (HBD) at a molar ratio of 1:2 and T = 70 °C. The formation of DES was confirmed by recording the NMR spectra. Further, the thermal dehydrogenation study was performed at a vacuum of 4 × 10?2 mbar (gauge pressure) of AB/DES and EDAB/DES systems at 105 °C, where a hydrogen equivalent of 1.40 and 2.55 was produced, respectively. The residual samples were further analyzed through 1H NMR analysis for the reaction mechanism and to confirm the role of Ionic Liquid-based DES as catalyst cum solvent media.  相似文献   
9.
《Ceramics International》2015,41(6):7796-7802
The perovskite proton conductors BaxCe0.7Zr0.1Y0.1Yb0.1O3−δ (x=0.9, 0.94, 0.98, 1.0, 1.03, 1.06, and 1.1) have been successfully prepared by the conventional solid state reaction route. X-ray diffraction (XRD) patterns of the samples indicate that BaxCe0.7Zr0.1Y0.1Yb0.1O3−δ (x≥1.0) samples possess a single phase orthorhombic structure, but a secondary phase (Y,Ce)O2−δ exists in BaxCe0.7Zr0.1Y0.1Yb0.1O3−δ (x<1.0) samples. SEM photographs show that the grain size of BaxCe0.7Zr0.1Y0.1Yb0.1O3−δ increases and the porosity decreases with Ba2+ content varying from x=0.9 to 1.1. Because of ZnO addition as sintering aid, the sintering temperature of the samples reduces from 1550 °C to 1250 °C. The chemical stability of the samples against CO2 decreases with the increase in Ba content from x=0.9 to 1.1. All the samples show a excellent stability against water vapor at 850 °C. The conductivities of the samples increase and the activation energies reduce with the increase in Ba content. The present results suggest that it is very important to control the stoichiometry of cations to obtain desired perovskite type high temperature proton conductors.  相似文献   
10.
A uniform solid product layer normally assumed in the shrinking-core model cannot predict the kinetic transition behavior of the H2 adsorption reactions. In this study, the concept of a uniform solid product layer has been replaced by that of the inward growth of solid products on the solid surface. A rate equation is established to calculate the inward growth of the solid product and was implemented into the shrinking-core model to calculate the H2 adsorption kinetics for various shapes of Mg-based materials. The prediction accuracy of the developed model is verified from the detailed experimental data. To account for the external gas diffusion around the particle and the intraparticle gas diffusion, an analytical equation is derived using the Thiele modulus method. This model can be used to analyze various kinetic aspects and to analyze the effect of change in the particle microstructure on intraparticle diffusion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号